Nom:	Prénom:
Nom:	Prénom:

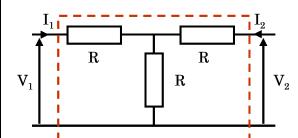
ECOLE POLYTECHNIQUE UNIVERSITAIRE DE NICE SOPHIA

Cycle Initial Polytech Première Année Année scolaire 2010/2011

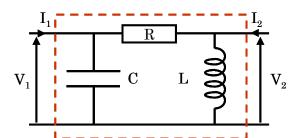
Epreuve d'électronique analogique N°1

Mercredi 2 Mars 2011 Durée : 1h30

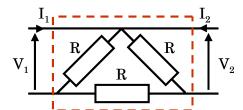
- □ Cours, documents et calculatrice non autorisés.
- □ Vous répondrez directement sur cette feuille.
- □ Tout échange entre étudiants (gomme, stylo, réponses...) est interdit
- □ Vous êtes prié:
 - d'indiquer votre nom et votre prénom.
 - d'éteindre votre téléphone portable (- 1 point par sonnerie).

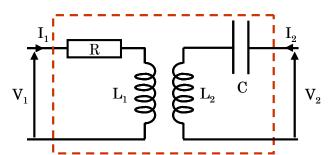

RAPPELS:

Impédance	$\begin{bmatrix} \mathbf{V}_1 \\ \mathbf{V}_2 \end{bmatrix} = \begin{bmatrix} \mathbf{Z}_{11} \\ \mathbf{Z}_{21} \end{bmatrix}$	$egin{bmatrix} \mathbf{Z}_{12} \ \mathbf{Z}_{22} \end{bmatrix} egin{bmatrix} \mathbf{I}_1 \ \mathbf{I}_2 \end{bmatrix}$	$\begin{cases} V_1 = Z_{11}.I_1 + Z_{12}.I_2 \\ V_2 = Z_{21}.I_1 + Z_{22}.I_2 \end{cases}$
Admittance	$\begin{bmatrix} I_1 \\ I_2 \end{bmatrix} = \begin{bmatrix} Y_{11} \\ Y_{21} \end{bmatrix}$	$\begin{bmatrix} \mathbf{Y}_{12} \\ \mathbf{Y}_{22} \end{bmatrix} \begin{bmatrix} \mathbf{V}_1 \\ \mathbf{V}_2 \end{bmatrix}$	$\begin{cases} I_1 = Y_{11}.V_1 + Y_{12}.V_2 \\ I_2 = Y_{21}.V_1 + Y_{22}.V_2 \end{cases}$
Gain en tension *	:	$A_v = \frac{V_2}{V_1} = {Z_{11} + \frac{Z_{11}}{}}$	$ \begin{array}{c} Z_{21} \\ .Z_{22} - Z_{12}.Z_{21} \\ X \end{array} $


^{*} X représente l'impédance branchée en sortie du quadripôle.

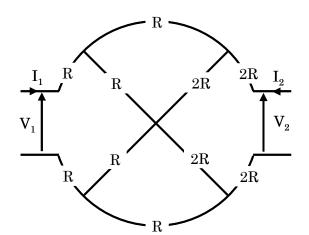
Impédance d'une capacité C	$1/(jC\omega)$ [Ω]
Impédance d'une self L	jLω [Ω]


- 1. (1 pt) Par la méthode de votre choix, déterminer les paramètres impédances de ce quadripôle :
- (0.25 pt) $Z_{11} = 2R$


- (0.25 pt) $Z_{12} = R$
- (0.25 pt) $Z_{21} = R$
- (0.25 pt) $Z_{22} = 2R$
- **2.** (1 pt) Par la méthode de votre choix, déterminer les paramètres admittances de ce quadripôle :
- (0.25 pt) $Z_{11} = jC\omega + 1/R$

- **(0.25 pt)** $Z_{12} = -1/R$
- (0.25 pt) $Z_{21} = -1/R$
- (0.25 pt) $Z_{22} = 1/R + 1/jL\omega$
- **3. (2 pts)** Par la méthode de votre choix, déterminer les paramètres impédances de ce quadripôle :
- (0.5 pt) $Z_{11} = 2R/3$

- **(0.5 pt)** $Z_{12} = R/3$
- **(0.5 pt)** $Z_{21} = R/3$
- (0.5 pt) $Z_{22} = 2R/3$
- **4. (1 pt)** Par la méthode de votre choix, déterminer les paramètres impédances de ce quadripôle :
- (0.25 pt) $Z_{11} = R + jL_1\omega$



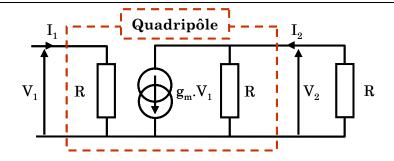
- **(0.25 pt)** $Z_{12} = 0$
- (0.25 pt) $Z_{21} = 0$
- (0.25 pt) $Z_{22} = 1/jC\omega + jL_2\omega$

BROUILLON	

5. (2 pts) Par la méthode de votre choix, déterminer les paramètres impédances de ce quadripôle :

(0.5 pt) $Z_{11} = 7R/2$

- (0.5 pt) $Z_{12} = R$
- (0.5 pt) $Z_{21} = R$
- (0.5 pt) $Z_{22} = 6R$


6. (1 pt) Dans la représentation impédance, déterminer l'expression de la résistance d'entrée de $R_E = \frac{V_1}{I_1} = Z_{11} - \frac{Z_{12}.Z_{21}}{Z_{22} + R}$ ce quadripôle. On détaillera les calculs.

$$R_E = \frac{V_1}{I_1} = Z_{11} - \frac{Z_{12}.Z_{21}}{Z_{22} + R}$$

I_1	r	\mathbf{I}_{2}	2	_
V_1	Quadripôle		V_2] R

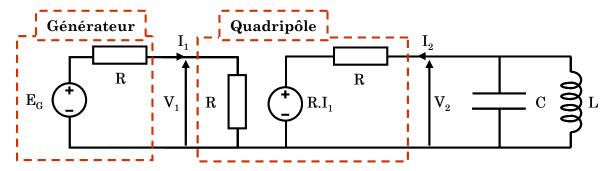
BROUILLON

7. (2 pts) Par la méthode de votre choix, déterminer les paramètres impédances, le gain et le gain à vide de ce quadripôle:

(0.25 pt)
$$Z_{11} = R$$

(0.25 pt)
$$Z_{12} = 0$$

(0.25 pt)
$$Z_{21} = -R^2.g_m$$


(0.25 pt)
$$Z_{22}=R$$

(0.5 pt)
$$A_v = \frac{V_2}{V_1} = -\frac{R.g_m}{2}$$

(0.5 pt)
$$A_{v0} = \frac{V_2}{V_1} = -R.g_m$$

BROUILLON

7. (4,5 pts) Par la méthode de votre choix, donner les paramètres impédances et la résistance d'entrée de ce quadripôle ainsi que le gain, le gain à vide et le gain composite du circuit :

(0.25 pt)
$$Z_{11} = R$$

(0.25 pt)
$$Z_{12} = 0$$

(0.25 pt)
$$Z_{21} = \mathbb{R}$$

(0.25 pt)
$$Z_{22} = R$$

(0.5 pt)
$$R_S = R$$

(0.5 pt)
$$A_{V0} = 1$$

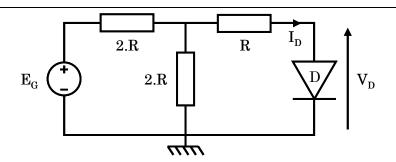
(1,5 pts) Montrez que le gain peut se mettre sous la forme :

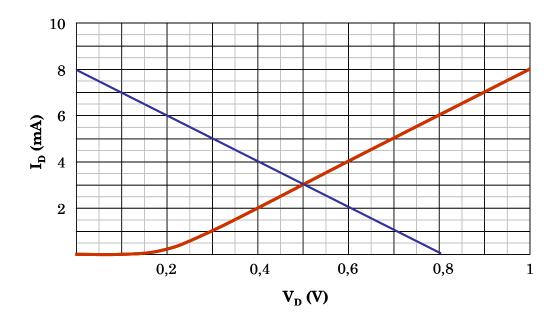
$$A_V = \frac{V_2}{V_1} = \frac{1}{1 + jQ \left(\frac{\omega}{\omega_0} - \frac{\omega_0}{\omega}\right)} = \frac{1}{1 + jR\sqrt{\frac{C}{L}} \left(\sqrt{LC}\omega - \frac{1}{\sqrt{LC}}\frac{1}{\omega}\right)}$$

Vous donnerez les expressions de :

$$Q =$$

$$\omega_0 =$$

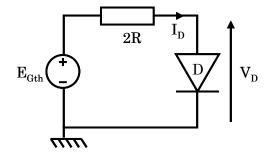

(0,5 pt) Donner l'expression de | A_V |


$$\left|A_{V}\right| = \frac{1}{\sqrt{1 + Q^{2} \left(\frac{\omega}{\omega_{0}} - \frac{\omega_{0}}{\omega}\right)^{2}}}$$

(0,5 pt)
$$A_{VG} = V_2 / E_G = A_V/2$$

8. (5,5 pts) Soit le circuit cicontre dont les éléments sont : $E_G = 1,6 \text{ V}, R = 50 \Omega$.

La caractéristique I_D(V_D) de la diode est donnée cidessous



(1,5 pt) Déterminer les valeurs de la tension de seuil et de la résistance série de la diode et donner l'expression du courant I_D lorsque la diode est passante.

$$V_S = 0.2 \text{ V}$$

$$R_S = 100 \Omega$$

$$I_D = (V_D - V_S)/R_S$$

(1 pt) Transformer le circuit pour ne faire apparaître qu'une seule maille. Dessiner ce circuit et donner les expressions et valeurs des nouveaux éléments.

Avec $E_{Gth} = E_G/2 = 0.8 \text{ V}$ et $R_{th} = R = 50 \Omega$

(0.5 pt) Est-ce que la diode peut être passante et pourquoi?

La tension appliquée à la boucle, 0.8 V, est supérieure à la tension de seuil de la diode donc elle est passante.

(1 pt) Déterminer alors l'expression et la valeur du courant I_D. Donner la valeur de la tension

 V_{D} aux bornes de la diode.

$$E_G/2 = (R + R_S).I_D + V_S$$
 soit $I_D = [E_G/2 - V_S]/(R + R_S) = 0.6 / 200 = 3 \text{ mA}$

$$V_D = 0.2 + 100x0.003 = 0.5 V$$

(0.5 pt) Donner l'expression de la droite de charge.

$$I_D = E_G/4R - V_D/2R$$

(1 pt) Tracer la droite de charge sur le graphique précédant et donner le point de polarisation (I_D,V_D)

$$(I_D; V_D) = (3 \text{ mA}; 0.5 \text{ V})$$